
CAPISTRANO 1.2.0Cheat Sheet

Installation
gem install capistrano

Add your application to Capistrano (capistranize)
cap --apply-to /path/to/your/app
YourApplicationName

Execute the setup task
rake remote:exec ACTION=setup

Execute the cold_deploy task
rake remote:exec ACTION=cold_deploy

Deploy your application
rake deploy

Rollback a release from production
rake rollback

Execute the disable_web task
rake remote_exec ACTION=disable_web \
 UNTIL="tomorrow morning" \
 REASON="vital upgrade"

Using the invoke task
rake remote_exec ACTION=invoke \
 COMMAND="svn up
/u/apps/flipper/current/app/views" \
 ROLES=app

Shell commands

cleans up the releases directory, leaving the five most recent releases
used when deploying an application for the first time. Starts the
application’s spinner (via the spinner task) and then does a normal
deploy

updates all the code on your server (via update_code and symlink
tasks), then restarts the FastCGI listeners on the application servers (via
the restart task).
prints the difference between what was last deployed, and what is
currently in your repository
puts up a static maintenance page that is displayed to visitors
removes the maintenance page
allows you to send commands directly
changes to the directory of your current release (as indicated by the
current symlink), and runs rake RAILS_ENV=production migrate
restarts all FastCGI listeners for your application by calling the reaper
command without arguments. Only executed on :app servers
rolls your application back to the previously deployed version
determines the previous release , updates the current symlink to point
to that, and then deletes the latest release
Creates and chmods the directory tree:
 releases_path directory 0775
 shared_path directory
 shared_path/system 0775
 shared_path/log 0777
inspect the existing tasks and display them to standard out in
alphabetical order, along with their descriptions
starts the spinner process for your application
updates the current symlink to the latest deployed version of the code
Checks out your source code, deletes the log and public/system
directories in your new release, symlinks log to
#{shared_path}/log, symlinks public/system to
#{shared_path}/system

cleanup
cold_deploy

deploy

diff_from_last_
deploy

disable_web
enable_web

invoke
migrate

restart

rollback
rollback_code

setup

show_tasks

spinner
symlink

update_code

www.dizzy.co.uk/cheatsheets

Setting and using variables
1 set :application, "flipper"
2 set :user, "homersimpson"
3 puts "The application name is
 #{application}"
4 puts "The user is #{user}"

Redefining the restart task
1 desc "This task restarts the web
 server"
2 task :restart, :roles =>
 :app do
3 sudo "apachectl graceful"
4 end

Defining tasks
1 task :hello_world do
2 run "echo Hello, $HOSTNAME"
3 end

1 task :hello_world, :roles =>
 [:db, :app] do
2 puts "calling hello_world..."
3 hello_world
4 end

Transactions
1 task :cold_deploy do
2 transaction do
3 task_one_here
4 task_two_here
5 end
6 task_three_not_in_transaction
7 end

Capturing output with run
1 run "sudo ls -la" do |channel,
 stream, data|
2 if data =~ /^Password:/
3 logger.info "#{channel[:host]}
 asked for password"
4 channel.send_data "mypass\n"
5 end
6 end

Parsing & saving an ERb template with render
1 buffer = render(:template =>
 <<EXAMPLE_TEMPLATE)
2 This template will be rendered
 replacing variables
 <%= like_this_variable =>
 with their values.
3 EXAMPLE_TEMPLATE
4 put buffer,
 "path/to/save/file.txt",
5 :mode => 0755

releases
 20050725121411
 20050801090107
 20050802231414
 ...
 20050824141402
 Rakefile
 app
 config
 db
 lib
 log-->/shared/log
 public
 system-->/shared/system
 script
 test
 vendor
shared
 log
 system
current-->/releases/20050824141402

Start the interactive Capistrano shell
cap -v shell

Execute Capistrano tasks
!deploy
!update_code symlink
!setup deploy
on app2.foo.com !setup
with app,db !setup deploy

Capistrano Shell

1 role :web, "www.capistrano.com"
2 role :app, "app1.capistrano.com",
 "app2.capistrano.com"
3 role :db, "master.capistrano.com",
 :primary => true
4 role :db, "slave.capistrano.com"
5 role :spare, "genghis.capistrano.com

 standard, predefined roles
 user-defined roles

Roles

task already has a defined on_rollback handler when using transactions

*Embedded Ruby

Directory structure
run
Takes a single string identifying any valid shell
command to execute
run <<-CMD
 if [[-d #{release_path}/status.txt
]]; then
 cat #{release_path}/status.txt
 fi
CMD
sudo
Exactly like the run command, except that it
executes the command via sudo
sudo "apachectl graceful"
put
Lets you transfer data to a file on the remote
host. Takes two parameters: a string containing
the data to transfer, and the name of the file to
receive the data on each remote host
put(File.read('templates/database.yml'
),"#{release_path}/config/database.yml
",:mode => 0444)
delete
A convenience for executing rm via run. It just
attempts to do an rm -f on the remote
server(s), for the named file. To do a recursive
delete, pass :recursive => true
delete "#{release_path}/certs",
:recursive => true
on_rollback
Allows a task to specify a callback to use if that
task raises an exception when invoked inside of
a transaction
task :update_code do
 on_rollback { delete release_path,
:recursive => true }
 ...
end
render
An interface for rendering ERb* templates and
returning the result. If you pass a string to
render, it is interpreted as the name of a
template file with .rhtml appended, relative
either to the current directory, or to
capistrano/recipes/templates to be
rendered. If you don’t want to render a file, but
instead have a string containing an ERb
template that you want to render, use the
second example below
render "maintenance"
render :template => "Hello <%= target
%>", :target => "world"

Helper Methods config/deploy.rb

Standard tasks

The name of your application. Used to build other values, like the
deployment directory.

The location of your code’s scm repository

The address of the server to use as a gateway. If given, all other
connections will be tunneled through this server.

The name of the user to use when logging into the remote host(s)

The password to use for logging into the remote host(s).

The root of the directory tree on the remote host(s) that the
application should be deployed to

The directory under deploy_to that should contain each
deployed revision

The name to use (relative to deploy_to) for the symlink that
points at the current release

The name of the directory under deploy_to that will contain
directories and files to be shared between all releases

This specifies the revision you want to check out on the remote
machines

The source control module to use. Current supported are
:subversion, :cvs, :darcs

The location on the remote host of the source control executable

The subversion operation to use when checking out code on the
remote host. Can be set to “export”

Hash of additional options passed to the SSH connection routine.
This lets you set (among other things) a non-standard port to
connect on (ssh_options[:port] = 2345)

Whether or not tasks that can use sudo, ought to use sudo. In a
shared environment, this is typically not desirable (or possible),
and in that case you should set this variable to false

sets the path to sudo

(required)

(required)

nil

(current user)

(prompted)

“/u/apps/#{app
lication}”

“releases”

“current”

“shared”

(latest revision)

:subversion

(path)

“co”

Hash.new

true

:application

:repository
:gateway

:user
:password
:deploy_to

:version_dir

:current_dir

:shared_dir

:revision

:scm

:svn, :cvs,
:darcs
:checkout

:ssh_options

:use_sudo

:sudo

Pre-defined variables

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 2.0 License. To
view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/2.0/uk

